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J. Phys. A: Math. Gen. 15 (1982) 2435-2439. Printed in Great Britain 

Critique of Komar’s solution to the factor ordering 
problem of the constraint algebra of general relativity 

P Y  ARyan 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, England 

Received 18 February 1982 

Abstract. It is shown that a solution to this problem proposed by Komar is invalid. We 
prove that the canonically quantised ADM constraints must be symmetrically ordered. 

1. Introduction 

We have recently completed an analysis that suggests that no consistent canonical 
quantisation of the constraint algebra of general relativity exists (Ryan 1982). 

A resolution of the problem has been proposed using non-Hermitian constraints 
(Komar ’i97Ea). Here m o u l d  iike to p o i ”  a number of errors in this analysis. 

In Q 2 I give a brief outline of the ADM formulation. Section 3 describes the Dirac 
quantisation scheme and states the general problem. Section 4 explains a number of 
difficulties in Komar’s ‘solution’. In § 5 we prove a theorem which effectively shows 
that no solution along the lines suggested by Komar can be consistent. Finally § 6 
contains some conclusions. 

2. The ADM formulation of general relativity 

The ADM (Arnowitt et a1 1962) Hamiltonian formulation of the dynamics of general 
relativity uses as configuration space coordinates the metric induced on space-like 
hypersurfaces. These we denote by the symbols g p c .  Barred indices label spatial 
components. Conjugate to the configuration space coordinates ADM define the 
momenta: 

I is, modulo a total divergence, the Hilbert action. These satisfy the (equal-time) 
fundamental Poisson bracket relations 

{ g p ; ( x ) ,  p“‘(x’)}  = +(s;S; +S;Ss)S(x, x ’ ) .  (2) 

The invariance of the action I under local translations x, + x, + 6, leads to a set 
of four constraints Xu. 
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Reflecting their geometric nature, these constraints verify a closed algebra with 
respect to the Poisson bracket. 

where I denotes the induced covariant derivative, the index i labels components 
normal to the hypersurfaces, g is the determinant of the three metric. R is the scalar 
curvature of the hypersurface, and p := gpspGs .  

3. The Dirac quantisation scheme 

Canonical quantisation is implemented by the following correspondence, where cir- 
cumflexes denote quantum operators: 

The square bracket denotes the quantum commutator. The quantum condition 
( 1  1) asserts that vectors representing physical states are gauge (i.e. coordinate) 
invariant. 

Consistency leads us, after Dirac, to require 

[g&, @v]l$)phys = 0. (12) 

This should follow directly from (1 l), that is, without imposing further conditions 

Consequently we anticipate that the quantum constraint algebra will be as follows: 
on the I 4 ) p h y s .  

The crucial point to note is that the tpc on the RHS of (15 )  are ordered to the left 
of the gF. 

It is hoped to find an ordering (or orderings) of the 2 and 6 in the gF such that, 
subject to the CCR’S, the algebra (13) - (15)  is verified. This problem seems to have 
been first investigated by Anderson (1963) .  
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4. Critique of Komar’s analysis 

Komar’s contention is that the non-symmetric ordering of the ‘Hamiltonian’ (normal) 
constraint 

_ _  &y = g-3/*$””(g Mug - - A - -  -;gp+-)P“ v c r  - g q  (16) 

along with a symmetric ordering of the hypersurface translation constraints &”, solves 
the problem. 

Komar (1976b) presents an argument that claims to demonstrate that constraints 
that generate dynamics must be non-Hermitian. This is intended to justify the 
non-symmetric ordering (16). The argument is, however, fallacious. Firstly, it must 
be remarked that Hermiticity is meaningless until an inner product has been defined 
on the Hilbert space. 

The argument would appear to rest on the assumption that 

&f+)phys= o * p h y s ( 4 ~ +  = 0. (17) 

As is made clear by Dirac (1962) this is invalid. Almond (1980) has provided an 
alternative refutation from a somewhat different point of view. 

It is not immediately clear, since the constraints are non-observable, that taking 
them to be non-Hermitian is inadmissible. However, it can be shown that for con- 
sistency they must be ‘normal’, that is, they must weakly commute with their adjoints. 
This can be seen by noting that, if ea annihilates physical state vectors, then 
generates symmetry transformations. Requiring such transformations to preserve the 
condition 

e a  I4)phys = 0 (18) 

[e;, ea] = 0. (19) 

leads directly to 

(This is a rather non-standard use of the term normal.) 
A short calculation shows that Komar’s ordering is not normal. 

5. Quantum ordering of the constraints 

For the translational constraints of general relativity, the following theorem can be 
proved. It is assumed that the representation is such that 6 and 6 are given by 
Hermitian operators. In view of the Stone-von Neumann theorem (Emch 1972) that 
states that all operator representations of the CCR are unitarily equivalent to the 
Schrodinger one, this seems perfectly reasonable. 

It should, however, be remarked (Isham 1975) that imposing a quantum analogue 
of the classical condition det(gp,)>O could cause difficulties. It is not clear that 
and $ could both be self-adjoint subject to such a condition. This is an important 
problem but, I feel, unlikely to affect these conclusions regarding the constraint 
orderings. I shall not discuss it further here. 

Theorem 1. If &,,* is an ordering of a canonically quantised translation constraint that 
is ‘normal’, then X,, is symmetric in non-commuting factors. 
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where we have defined &” := %’; - 2” which arises from the commutation of factors 
in &”. 6” is an arbitrary vector flow on space-time. 

Because the % are constrained to vanish, it is permissible to draw the 6 inside the 
Poisson bracket. 

In going from (22) to (23) we have employed the elementary lemma 

[d, d] = 0 (26) 

3{d,Ba)=O (27) 
the converse of which is, of course, not valid. 

The symbol 9* denotes the Lie derivative with respect to the vector flow 6. This, 
and its relation to equation (24), is explained in, for example, Fischer and Marsden 
(1972). 

Thus, if 9 # 0, it is seen that it must be a function of the spatial metric and its first 
derivatives whose Lie derivative with respect to an arbitrary vector flow is weakly zero. 

It remains to show that 9 # O(r :  @ # 0. This follows quite easily from the observa- 
tion that all the terms in ,# will occur with the same sign because %’+ can be made 
to coincide with %’ by commuting p* to the left and 

If ,# # 0 the space-time would have to satisfy the strong homogeneity condition 
(25). Hence, for a generic space-time, the theorem is proven. 

In fact, for the ADM coordinates, a more mundane proof can be supplied. Consider 
the Hamiltonian constraint XL. We have in general 

to the right (say). 

gL - = iag-*’*gkFpfiF cy E R .  (28) 

-$cyg-’p~.”p“~(g _ _  _ _  -ag 1 

Now it can be checked that a necessary condition for normality is 

(29) 
That is cy = 0. Hence 

9tL--&,= =o.  (30) 
I have included the more elaborate proof because it is rather instructive and is 

_ _  --) = 0. 
” & U T  ”Ugor 

valid for any canonical coordinates of geometrodynamics. 

6. Conclusions 

I think it is fair to conclude that Komar’s ‘solution’ is invalid. Further, due to the 
theorem of 0 5 ,  no such solution using non-symmetric orderings can yield a consistent 
theory. 
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